致力于医学论文编修发表的专业团队 联系我们
医学论文
客户评价 CUSTOMER FEEDBACK
  • K.J 副主任医师---中国人民解放军总医院经朋友介绍与晋职尝试合作至今已成功发表3篇论文,最近一篇被外科学顶级杂志Annals of Surgery(IF=7.5)所接受。晋职是迄今为止我所合作过最为专...
  • m .t.z ----厦门中山医院副主任医师这已经是第三次找晋职医学了,和前两次一样依然合作的很开心。与晋职合作最让我放心的是晋职医学的专业性,现在网上有很多号称可以做SCI论文服 务的公司,太多将精力放...
资源资讯 RESOURCE

联系我们 CONTACT US

口腔科学论文

当前页面:医学论文 > 口腔科学论文 > 正文内容

NLRP3炎症小体对口腔鳞状细胞癌作用的研究进展

来源:搜集整理   日期:2021-02-25 08:33:50点击数:

摘    要:
慢性炎症在肿瘤的进展过程中发挥着重要作用,NLRP3炎症小体作为NLRs家族的核心蛋白,其激活后可以招募ASC,裂解Caspase-1并使其活化,促进IL-1β和IL-18分泌成熟,进而介导炎症反应。目前,关于NLRP3炎症小体的研究较为深入,其与体内炎症、肿瘤等多种疾病的发生、发展密切相关。该文针对NLRP3炎症小体对口腔鳞状细胞癌的相关作用进行综述。
 
关键词:
鳞状细胞癌 口腔 NLRP3炎症小体
Advances on the role of NLRP3 inflammasome in oral squamous cell carcinoma
Qian-yu Zhang Li Xiao Yan-shuang Peng Ying Liu
Department of Stomatology, North Sichuan Medical College;
Abstract:
Chronic inflammation plays an important role in the progression of tumors. The NLR family pyrin domain containing 3(NLRP3) inflammasome, the core protein of the NOD-like receptors(NLRs) family, recruits apoptosis-associated speck-like protein containing a caspase-recruitment domain(ASC) after its activation, and then cleaves caspase-1 to activate it, thereby promoting the maturation of interleukin-1β(IL-1β) and interleukin-18(IL-18), which further mediates the inflammatory response. At present, NLRP3 inflammasome is studied deeply, and it has been demonstrated to be closely related to the occurrence and development of various diseases such as inflammation and cancer. However, the overview of the role of NLRP3 inflammasome in oral squamous cell carcinoma has not been reported. This article will review the relevant effects of NLRP3 inflammasome on oral squamous cell carcinoma.
 
Keyword:
NLRP3 inflammasome; oral squamous cell carcinoma(OSCC);
肿瘤相关性炎症在癌症的发生、发展过程中起着至关重要的作用[1-7],并被称为恶性肿瘤的第七大生物学特征[8]。慢性炎症一方面主要通过调控NF-κB-IL-6-STAT信号通路在肿瘤发生、发展、迁移和侵袭的过程中发挥着重要的作用[9-11];另一方面,其可招募免疫细胞和炎症细胞到肿瘤组织,随着肿瘤的进展,这些细胞由抑制和免疫监视的作用逐步演变为促进肿瘤细胞增殖的作用[12]。慢性炎症还可通过增加DNA损伤率,破坏DNA修复机制,导致基因的不稳定性和产生突变[13]。
 
口腔癌症的发病率比较高,居于全身恶性肿瘤发病率的第6位,其中90%为口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)[14],预后较差,但目前其发病机制尚未明确。口腔作为一个有700多种微生物定植的微环境,长期处于有致病菌的炎症环境状态下,炎症小体与口腔疾病的发生、发展密切相关[15-16]。NLRP3炎症小体作为核苷酸结合寡聚化结构域样受体(NLRs)家族中的核心蛋白,是机体固有免疫系统的一员,其异常激活与各种慢性炎症、线粒体疾病及肿瘤都有一定的联系[17-18]。现有研究表明,NLRP3炎症小体与人体内不同肿瘤的进展过程密切相关[19-24],其活化后可以促进肺癌A549细胞的增殖和迁移[24];但与非癌性肝组织相比,其在肝癌组织中的表达却明显降低,且其表达量与肝癌的病理类型及分期相关[25]。
 
1 NLRP3炎症小体的组成与激活
NLRP3炎症小体由NLRs家族成员NLRP3、接头蛋白ASC和效应蛋白Caspase-1组成,其激活与孔隙的形成、K+的流出、溶酶体的不稳定及破裂和线粒体活性氧的产生等分子机制有关[18],且在转录与逆转录水平方面都有一定的调节作用。其激活需要2种信号,第一信号通过TLR/NF-κB信号通路上调NLRP3炎症小体的表达;第二信号由来源于病菌、大量的穿孔素、ATP、粒子的结晶和集聚等的病原体相关分子模式(PAMPs)和损伤相关分子模式(DAMPs)转换而来,在受到危险信号刺激时,NLRP3的LRR域与ASC的PYD域相互作用,通过ASC招募pro-Caspase-1,产生Caspase-1的活化和级联放大反应,进而使pro-IL-1β和pro-IL-18分泌为成熟的IL-1β和IL-18,并在一定的情况下通过自我催化和激活诱导细胞凋亡[17-18,26-27]。此外,在NLRP3炎症小体的非典型活化途径中,革兰阴性菌的胞内脂多糖通过触发Caspase-11,进而活化NLRP3炎症小体,诱导细胞焦亡[28-30]。
 
2 NLRP3炎症小体在OSCC发生、发展中的作用
2.1 NLRP3炎症小体在OSCC中的作用
相关研究表明,NLRP3炎症小体在OSCC中的表达显著升高[31-36],且其表达量与肿瘤分期、淋巴结转移情况有关[31],但与HPV感染无明显相关性[35];NLRP3的激活促进OSCC细胞的增殖、迁移和侵袭[31]以及OSCC的形成[32]。有学者认为该炎症小体通过NLRP3炎症小体/IL-1β信号通路促进抗肿瘤免疫反应[34-35],从而在OSCC中发挥关键的作用。为进一步探究NLRP3炎症小体在OSCC中的相关作用机制,BAE等[33]针对嘌呤能受体P2X7 (P2X7R)与NLRP3炎症小体在OSCC发生、发展过程中的相互作用进行了研究,发现ATP分子引发激活NLRP3炎症小体后,P2X7R作为一个细胞毒性通道,两者的高表达共同激活NLRP3炎症小体信号通路,促进了OSCC的发生和发展,且两者的高表达与OSCC患者的预后相关;而FENG等[36]研究表明micro RNA-22在OSCC中表达降低,且与NLRP3的表达呈负相关,认为micro RNA-22可能通过靶向NLRP3炎症小体在OSCC中发挥抑制作用,为OSCC的靶向治疗提供了新的思路。
 
接头蛋白ASC作为NLRP3炎症小体的组成部分,在OSCC的进展过程中尤为关键,但目前对ASC在OSCC中的作用尚有争论。WU等[37]首次报道ASC参与OSCC的转移,研究发现,ASC同NLRP3、Caspase-1和IL-1β在OSCC组织中表达均显著升高,且ASC的高表达与肿瘤分期、淋巴结分期、肿瘤深度等显著相关,其高表达也可作为OSCC患者预后不良的标志。然而SHIMANE等[38]却认为虽然ASC表达与临床肿瘤分期、侵袭方式等均有显著相关性,但其可能在OSCC细胞分化和凋亡中发挥调节作用,诱导细胞凋亡,抑制OSCC细胞的存活,因此ASC的低表达与OSCC的预后不良有关。因此,对于ASC在OSCC发生、发展过程中的具体作用及其机制,还需进一步探索研究。
 
2.2 NLRP3炎症小体激活IL-1β、IL-18在OSCC中的作用
NLRP3炎症小体激活后,其下游的pro-IL-1β和pro-IL-18分泌为成熟的IL-1β和IL-18[18],因此,通过发现IL-1β或IL-18对OSCC的作用,可以间接探究NLRP3炎症小体/IL-1β或NLRP3炎症小体/IL-18信号通路在其中的作用机制。
 
相关研究证实,OSCC中IL-1β表达升高,促进了OSCC细胞的发生和发展,但其研究的作用机制不同,CHEN等[39]发现,IL-1β可以通过上调Grx1的表达,协调OSCC细胞内活性氧的水平,从而参与OSCC细胞的侵袭与迁移;WU等[40]认为,肿瘤来源的IL-1β通过增强基质糖酵解、诱导肿瘤间质转化过程中的单向乳酸流动,从而促进OSCC细胞的增殖;而LEE等[41]学者研究发现,经过烟草和槟榔相关的致癌物刺激后,OSCC中IL-1β的分泌增加,引起Akt信号通路的失调,从而使IL-6、IL-8和生长调节致癌基因α分泌增加,并通过上皮间充质转化促进了OSCC的侵袭与发展。
 
唾液作为OSCC生活的外部环境,肿瘤细胞分泌的某些可溶性蛋白直接进入唾液中,因此,检测唾液中OSCC标志物含量可能比检测血清更敏感、更具有特异性[42-43]。唾液也因其易获得、无创性、患者易于接受、可反复采集及便于保存等优势,使寻找唾液中OSCC的标志物成为研究热点。在KAMATANI等[44]的研究中发现,OSCC患者静息唾液中术前、术后的IL-1β含量变化有显著差异,这提示OSCC患者唾液中IL-1β含量的变化可用来早期预测和诊断OSCC。
 
LI等[45]研究发现,IL-18的过表达可以通过Wnt/β-连环蛋白信号通路促进肿瘤细胞上皮间充质转化,诱导OSCC细胞的侵袭和转移;也可通过激活糖原合成激酶3β信号通路降低舌鳞癌细胞的存活率,诱导细胞凋亡[46]。
 
2.3 NLRP3炎症小体在OSCC化疗中的作用及影响
5-氟尿嘧啶是目前治疗OSCC最常用、最有效的药物之一。但由于5-氟尿嘧啶的持续给药,使肿瘤细胞对其产生耐药性,明显减弱了该药对OSCC的治疗效果,因此,探究OSCC细胞耐药性的分子机制,有助于改善并制定更有效的治疗方案。有研究表明,经5-氟尿嘧啶治疗后,细胞内活性氧可以激活OSCC细胞中NLRP3炎症小体并使其表达增加,而NLRP3炎症小体的高表达与经5-氟尿嘧啶治疗后OSCC患者的临床预后不良有关,反之,NLRP3炎症小体的表达量减少可以增强5-氟尿嘧啶在体内的抗肿瘤作用[47]。因此,在5-氟尿嘧啶治疗OSCC的过程中,可以考虑阻断ROS/NLRP3炎症小体/IL-1β通路,从而提高5-氟尿嘧啶的疗效。
 
2.4 NLRP3炎症小体在OSCC放化疗后黏膜炎中的作用
OSCC的预后较差,5年生存率仅有50%,但目前其治疗以手术为主,辅以放化疗,因此,防治OSCC患者术后并发症可以提高患者生活质量,减轻患者痛苦。口腔黏膜炎是一种较为常见的放疗或化疗后的急性副作用性疾病,其损伤正常组织而形成深层黏膜溃疡,引起患者极度不适,但目前尚无有效的治疗方法[48]。ORTIZ等[49]针对NLRP3炎症小体对口腔黏膜炎的作用进行了研究,并评估了褪黑素对该疾病的作用。该研究发现,线粒体氧化应激、生物能量损伤及NLRP3炎症小体的活化参与了放射治疗后口腔黏膜炎的发生、发展,褪黑激素凝胶可以保护线粒体免受辐射损伤,弱化了NF-κB/NLRP3炎症小体信号通路的激活,应用褪黑激素凝胶可以恢复舌内褪黑激素的生理水平,防止黏膜破裂和溃疡形成。提示OSCC患者放射治疗后可局部应用褪黑素,预防口腔黏膜炎的发生。
 
3 结语
综上所述,NLRP3炎症小体在OSCC的发生发展、药物治疗及放化疗术后反应中均起着重要作用,但其更深入的作用机制、信号通路有待进一步研究。同时,NLRP3炎症小体在OSCC患者中表达量的变化是否可作为早预测、早诊断OSCC的生物学指标,仍需要更多的基础和临床研究进一步证实。
 
参考文献
[1] CRUSZ S M, BALKWILL F R. Inflammation and cancer:advances and new agents[J]. Nat Rev Clin Oncol, 2015, 12(10):584-596.
 
[2] WANG Z Y, WANG N, ZHENG Y F, et al. Inflammasome and Cancer[J]. Exp Suppl, 2018, 108:281-302.
 
[3] KANTONO M, GUO B. Inflammasomes and cancer:the dynamic role of the inflammasome in tumor development[J]. Front Immunol, 2017, 8:1132.
 
[4] KARKI R, MAN S M, KANNEGANTI T D. Inflammasomes and Cancer[J]. Cancer Immunol Res, 2017, 5(2):94-99.
 
[5] MUZES G, SIPOS F. Inflammasome, inflammation and cancer:an interrelated pathobiological triad[J]. Curr Drug Targets, 2015,16(3):249-257.
 
[6] THI H, HONG S. Inflammasome as a therapeutic target for cancer prevention and treatment[J]. J Cancer Prev, 2017, 22(2):62-73.
 
[7] LEE C, DO H, HER J, et al. Inflammasome as a promising therapeutic target for cancer[J]. Life Sci, 2019:DOI:10.1016/j.lfs.2019.116593.
 
[8] MANTOVANI A. Cancer:inflaming metastasis[J]. Nature, 2009,457(7225):36-37.
 
[9] GRIVENNIKOV S I, KARIN M. Dangerous liaisons:STAT3 and NF-kappaB collaboration and crosstalk in cancer[J]. Cytokine Growth Factor Rev, 2010, 21(1):11-19.
 
[10] HE A, SHAO J, ZHANG Y, et al. CD200Fc reduces LPSinduced IL-1beta activation in human cervical cancer cells by modulating TLR4-NF-kappaB and NLRP3 inflammasome pathway[J]. Oncotarget, 2017, 8(20):33214-33224.
 
[11] GEIGER J L, GRANDIS J R, BAUMAN J E. The STAT3pathway as a therapeutic target in head and neck cancer:Barriers and innovations[J]. Oral Oncol, 2016, 56:84-92.
 
[12] PEDDAREDDIGARI V G, WANG D, DUBOIS R N. The tumor microenvironment in colorectal carcinogenesis[J]. Cancer Microenviron, 2010, 3(1):149-166.
 
[13] VALDIGLESIAS V, GIUNTA S, FENECH M, et al.γH2AX as a marker of DNA double strand breaks and genomic instability in human population studies[J]. Mutat Res, 2013, 753(1):24-40.
 
[14]张建祖.口腔癌流行病学研究进展[J].包头医学院学报, 2013,29(1):114-115.
 
[15] BULLON P, PAVILLARD L E, de la TORRE-TORRES R.Inflammasome and oral diseases[J]. Exp Suppl, 2018, 108:153-176.
 
[16] LV K J, WANG G H, SHEN C L, et al. Role and mechanism of the nod-like receptor family pyrin domain-containing 3inflammasome in oral disease[J]. Arch Oral Biol, 2019, 97:1-11.
 
[17] ZHANG Z T, DU X M, MA X J, et al. Activation of the NLRP3inflammasome in lipopolysaccharide-induced mouse fatigue and its relevance to chronic fatigue syndrome[J]. J Neuroinflammation, 2016, 13(1):71.
 
[18] JO E K, KIM J K, SHIN D M, et al. Molecular mechanisms regulating NLRP3 inflammasome activation[J]. Cell Mol Immunol, 2016, 13(2):148-159.
 
[19] LI L L, LIU Y G. Aging-related gene signature regulated by Nlrp3 predicts glioma progression[J].Am J Cancer Res, 2015, 5(1):442-449.
 
[20] WANG H, WANG Y J, DU Q M, et al. Inflammasomeindependent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells[J]. Experimental Cell Research,2016, 342(2):184-192.
 
[21] PANCHANATHAN R, LIU H, CHOUBEY D. Hypoxia primes human normal prostate epithelial cells and cancer cell lines for the NLRP3 and AIM2 inflammasome activation[J]. Oncotarget,2016, 7(19):DOI:10.18632/oncotarget.8594.
 
[22] DUPAUL-CHICOINE J, ARABZADEH A, DAGENAIS M, et al. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity[J]. Immunity, 2015, 43(4):751-763.
 
[23] WANG Y L, KONG H, ZENG X W, et al. Activation of NLRP3inflammasome enhances the proliferation and migration of A549lung cancer cells[J]. Oncology Reports, 2016, 35(4):2053-2064.
 
[24] KONG H, WANG Y L, ZENG X W, et al. Differential expression of inflammasomes in lung cancer cell lines and tissues[J]. Tumour Biol, 2015, 36(10):7501-7513.
 
[25] WEI Q, MU K, LI T, et al. Deregulation of the NLRP3inflammasome in hepatic parenchymal cells during liver cancer progression[J]. Laboratory Investigation; A Journal of Technical Methods And Pathology, 2014, 94(1):52-62.
 
[26] VANAJA S K, RATHINAM V A, FITZGERALD K A.Mechanisms of inflammasome activation:recent advances and novel insights[J]. Trends Cell Biol, 2015, 25(5):308-315.
 
[27] HE Y, HARA H, NUNEZ G. Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci, 2016,41(12):1012-1021.
 
[28] MAN S M, KANNEGANTI T D. Regulation of inflammasome activation[J]. Immunol Rev, 2015, 265(1):6-21.
 
[29] VANAJA S K, RUSSO A J, BEHL B, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation[J]. Cell, 2016, 165(5):1106-1119.
 
[30]罗炳生,刘靖华. LPS的胞内受体Caspase-11的研究进展[J].生物化学与生物物理进展, 2018(3):289-296.
 
[31] WANG H, LUO Q Q, FENG X D, et al. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma[J].BMC Cancer, 2018, 18(1):500.
 
[32] HUANG C F, CHEN L, LI Y C, et al. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1):116.
 
[33] BAE J Y, LEE S W, SHIN Y H, et al. P2X7 receptor and NLRP3inflammasome activation in head and neck cancer[J].Oncotarget, 2017, 8(30):48972-48982.
 
[34] CHEN L, HUANG C F, LI Y C, et al. Blockage of the NLRP3inflammasome by MCC950 improves anti-tumor immune responses in head and neck squamous cell carcinoma[J]. Cell Mol Life Sci, 2018, 75(11):2045-2058.
 
[35] TAKANO K, KONDO A, KUROSE M, et al. Expression of inflammasome-associated proteins in human oropharyngeal squamous cell carcinoma[J]. Adv Otorhinolaryngol, 2016, 77:98-104.
 
[36] FENG X P, LUO Q Q, WANG H, et al. MicroRNA-22suppresses cell proliferation, migration and invasion in oral squamous cell carcinoma by targeting NLRP3[J]. J Cell Physiol,2018, 233(9):6705-6713.
 
[37] WU C S, CHANG K P, OUYANG C N, et al. ASC contributes to metastasis of oral cavity squamous cell carcinoma[J].Oncotarget, 2016, 7(31):50074-50085.
 
[38] SHIMANE T, KOBAYASHI H, TAKEOKA M, et al. Clinical significance of apoptosis-associated speck-like protein containing a caspase recruitment domain in oral squamous cell carcinoma[J]. Oral Surg Oral Med Oral Pathol Oral Radiol,2013, 115(6):799-809.
 
[39] CHEN X J, LV Q S, HONG Y, et al. IL-1βmaintains the redox balance by regulating glutaredoxin 1 expression during oral carcinogenesis[J]. J Oral Pathol Med, 2017, 46(5):332-339.
 
[40] WU J, HONG Y, WU T, et al. Stromal-epithelial lactate shuttle induced by tumorderived interleukin1βpromotes cell proliferation in oral squamous cell carcinoma[J]. Int J Mol Med,2018, 41(2):687-696.
 
[41] LEE C H, CHANG J S, SYU S H, et al. IL-1βpromotes malignant transformation and tumor aggressiveness in oral cancer[J]. J Cell Physiol, 2015, 230(4):875-884.
 
[42] RADHIKA T, JEDDY N, NITHYA S, et al. Salivary biomarkers in oral squamous cell carcinoma-An insight[J]. J Oral Biol Craniofac Res, 2016, 6(1):S51-S54.
 
[43] KHURSHID Z, ZAFAR M S, KHAN R S, et al. Role of salivary biomarkers in oral cancer detection[J]. Advances in clinical chemistry, 2018, 86:23.
 
[44] KAMATANI T, SHIOGAMA S, YOSHIHAMA Y, et al.Interleukin-1 beta in unstimulated whole saliva is a potential biomarker for oral squamous cell carcinoma[J]. Cytokine, 2013,64(2):497-502.
 
[45] LI Y Y, XU Z M, LI J, et al. Interleukin-18 expression in oral squamous cell carcinoma:its role in tumor cell migration and invasion, and growth of tumor cell xenografts[J]. FEBS Open Bio, 2018, 8(12):1953-1963.
 
[46] LIU W W, HU M, WANG Y M, et al. Overexpression of interleukin-18 protein reduces viability and induces apoptosis of tongue squamous cell carcinoma cells by activation of glycogen synthase kinase-3βsignaling[J]. Oncol Rep, 2015, 33(3):1049-1056.
 
[47] FENG X D, LUO Q Q, ZHANG H, et al. The role of NLRP3inflammasome in 5-fluorouracil resistance of oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1):81.
 
[48] AL-DASOOQI N, SONIS S T, BOWEN J M, et al. Emerging evidence on the pathobiology of mucositis[J]. Support Care Cancer, 2013, 21(11):3233-3241.
 
[49] ORTIZ F, ACUNA-CASTROVIEJO D, DOERRIER C, et al.Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis[J]. J Pineal Res,2015, 58(1):34-49.
标签:

上一篇:优质护理服务在口腔种植Ⅱ期手术中的应用

下一篇:SOX2通过PI3K/AKT通路调控口腔鳞癌细胞迁徙的机制研究

合作客户


Copyright © 医学期刊网 版权所有