致力于医学论文编修发表的专业团队 联系我们
医学论文
客户评价 CUSTOMER FEEDBACK
  • K.J 副主任医师---中国人民解放军总医院经朋友介绍与晋职尝试合作至今已成功发表3篇论文,最近一篇被外科学顶级杂志Annals of Surgery(IF=7.5)所接受。晋职是迄今为止我所合作过最为专...
  • m .t.z ----厦门中山医院副主任医师这已经是第三次找晋职医学了,和前两次一样依然合作的很开心。与晋职合作最让我放心的是晋职医学的专业性,现在网上有很多号称可以做SCI论文服 务的公司,太多将精力放...
资源资讯 RESOURCE

联系我们 CONTACT US

临床医学论文

当前页面:医学论文 > 临床医学论文 > 正文内容

内质网应激在糖尿病心脏代谢异常中的作用研究

来源:搜集整理   日期:2020-06-02 11:54:18点击数:

【摘要】 糖尿病(diabetes mellitus,DM)是胰岛素分泌绝对或相对不足,以高血糖、高血脂为特征的代谢紊乱综合征。近年来,糖尿病的发病率逐年增高,心血管并发症已成为糖尿病患者死亡的主要原因。流行病学研究发现,糖尿病患者70%以上死于心血管系统疾病,是非糖尿病人群心血管系统疾病病死率的2~3倍。

  糖尿病性心脏病(diabetic cardiopathy,DC)是指糖尿病患者在糖、脂肪等代谢紊乱基础上所继发的心血管疾病,包括微血管病变、心肌病和心脏自主神经功能紊乱所引起的心律失常及心功能异常。由于越来越多的证据表明慢性内质网应激(endoplasmic reticulum stress,ER stress)与糖尿病性心脏病有关,内质网应激在糖尿病心脏代谢异常中发挥了重要作用。

  【关键词】 糖尿病心脏代谢; 内质网应激


  近年来,糖尿病患病群体随人们生活水平和生活质量的提高而明显变大。据流行病学统计,死于糖尿病心血管并发症的人数占多数,心脏重构是其常见心血管并发症之一。

  心脏是机体血液循环的动力泵,对能量需求和消耗都比较大,能够通过多种途径获取ATP以完成其机械功能。在心脏所消耗的能量当中,由脂肪酸β氧化途径获取的能量占大部分,同时也可以利用葡萄糖和酮体等进行氧化供能。糖尿病时,心脏重构和心功能下降与心肌细胞能量代谢障碍紧密关联。

  研究发现,糖尿病环境下,在心脏重构发生前,心肌细胞较早表现为脂肪酸代谢异常,由其所引起的脂质蓄积、慢性炎症和有害代谢副产物活性氧类(reactive oxygen species,ROS)增加等可能通过引起内质网应激等促进机体心脏重构的发生,因此,为逆转心脏重构的发生,可考虑通过纠正脂肪酸的异常代谢。

  1 糖尿病心脏脂肪酸代谢异常

  在生理情况下,通过脂肪酸的β氧化获得的能量占心肌细胞总能量的绝大部分[1],葡萄糖的有氧氧化供能仅占少部分。当机体内环境发生改变时,如代谢底物的浓度、相关激素的水平、氧供应等,心肌细胞可进行一定程度自我调节,如通过提高各种能量物质的代谢率以减少对心肌细胞能量需要的影响,若心肌细胞能量代谢谱发生持久的改變,将进一步加剧心功能的恶化和导致心脏重构的发生。

  脂肪酸转位酶(fatty acid translocase,FAT),又名CD36,是体内脂肪酸分解代谢中比较重要的酶。生理情况下,CD36分布于细胞质与细胞膜上,脂肪酸由细胞外向细胞内进行跨膜转运主要依赖于胞膜上的CD36[2]。肉毒碱脂酰转移酶1b(carnitine palmitoyltransferase-1b,CPT-1b)是脂肪酸分解代谢中另一个关键酶,线粒体外膜是其关键位点,脂肪酸由胞质向线粒体的转运主要依赖该酶,是脂肪酸β氧化过程中重要的限速酶[3]。

  糖尿病患者由于存在葡萄糖利用障碍,胞质内的CD36可转移到细胞膜上,胞膜上的CD36明显升高,相应的进入胞内的脂肪酸会明显增多[4-5];有研究发现,当上调CPT-1b的表达水平,能够促使更多的脂肪酸进入线粒体,参与胞内的脂肪酸β氧化[3,6];此外,脂肪酸的氧化率会随着细胞对脂肪酸摄取增加而提高[7]。进而,脂肪酸的β氧化将逐渐成为心肌细胞的主要获能方式。

  但是,在这一过程中,脂肪酸的摄取远超过细胞对脂肪酸的利用,进而导致过多的脂质在心肌细胞内堆积,引起心肌细胞脂毒性[8]。心肌细胞能量代谢的改变与心脏重构紧密关联,因此,通过调节心肌细胞的能量代谢,有可能会逆转心脏重构和改善心功能。

  Yang等[9]研究发现,下调肌球蛋白重链-过氧化物酶体增殖物激活受体α(peroxisome proliferators-activated receptorα,PPARα)小鼠(一种PPARα在心脏过度表达的转基因老鼠,已发生心脏重构)的CD36表达,糖尿病所引起的心脏重构会随着脂肪酸的摄取减少而受到抑制。

  2 糖尿病心脏脂肪酸代谢异常与内质网应激

  2.1 糖尿病心脏脂肪酸代谢异常对内质网的影响 内质网是胞内重要细胞器之一,生理条件下,是机体蛋白质合成、加工以及许多脂质合成的场所,对胞内Ca2+水平及内环境的稳态等具有调控作用[10]。

  在某些病理条件下(如缺血、氧化应激等有害因素)可导致内质网出现功能紊乱,使蛋白质合成以及加工发生异常,进而堆积于内质网腔内,同时伴有Ca2+平衡紊乱,把此过程称为内质网应激。

  当有害刺激超过细胞所承受的范围,细胞将通过C/EBP同源蛋白、胱天蛋白酶12蛋白和C-Jun氨基末端激酶这三条途径去启动自身胞凋亡程序[11]。

  近期研究发现,分子监控蛋白及富含Ca2+的胞内环境等多种因素参与对内质网功能的调节[12]。机体会在某些病理情况下启动内质网应激以缓解自身功能的紊乱,如缺氧、氧化应激或Ca2+平衡紊乱等,把该过程称作未折叠蛋白反应(unfolded protein response,UPR)[13]。

  在糖尿病患者体内,有害代谢副产物ROS会随着脂肪酸β氧化的增加而增加,进而介导氧化应激反应,引起内质网应激甚至细胞发生凋亡。Frustaci等[14]研究发现,ROS含量在糖尿病心肌病患者的心肌细胞中是明显增加的。ATP的合成受到ROS引起的氧化应激影响,从而对心肌造成毒性。动物实验表明,上述改变可通过加用ROS抑制剂进行逆转[15]。对糖尿病患者来说,心脏重构的发生与内质网应激及细胞凋亡密不可分。

  2.2 糖尿病心脏脂肪酸代谢异常对胞内Ca2+调控的影响 生理条件下,Ca2+水平高低与心肌细胞的收缩及舒张紧密相关。心肌细胞在收缩时,胞内Ca2+水平是升高的,在舒张时,胞内Ca2+水平是降低的。Ca2+浓度的调控需要离子通道及离子泵协助,如胞内的Ryanodine受体2型通道、Na+-Ca2+交换体、Ca2+泵等。研究发现,这些离子通道和离子泵在Ca2+的浓度调节中发挥了重要作用[16]。在心肌收缩与舒张过程中,Ca2+浓度的改变起到至关重要的作用,若其出现问题,可引起心脏重构和心功能的恶化[17-18]。

  此外,心肌的点兴奋性也受到Ca2+的控制[19]。心肌舒张功能障碍是糖尿病心脏重构的早期表现,可能与心肌细胞脂肪酸代谢增加有关,心肌细胞出现能量代谢障碍,这些离子通道和离子泵可利用的ATP减少,功能受损,胞内存储过多Ca2+,舒张功能受到影响。再者,胞质内出现过多的脂肪酸堆积,胞膜上Ca2+通道被激活,过多Ca2+由胞外进入细胞内,出现Ca2+超载,加重Ca2+泵的工作负荷,严重影响心脏的机械功能。有研究发现,在心力衰竭家兔的心室肌细胞中有大量的脂质堆积,胞内Ca2+泵表达水平、活性受到影响,进一步导致心脏舒缩功能障碍[20],提示心脏的舒缩功能与脂肪酸代谢异常引起的Ca2+水平是紧密相关的。

  2.3 糖尿病心脏脂肪酸代谢异常引起内质网应激 与其他组织不同的是,成年心脏中的心肌细胞优先使用脂肪酸来满足它们的高能量需求,这表明了心脏中脂质代谢的重要性。另一方面,心肌TG的积累往往与心功能受损有关。

  在有压力的心脏中观察到细胞内TG的积累,这被认为是导致心力衰竭的心脏脂毒性的一个标志。值得注意的是,特定的心臟状况,如压力过载或缺血,会引起ER应激,可能导致应激介导的脂质积累导致心肌细胞功能障碍。最近的研究支持了这一假设,缺氧/缺血诱导的HL-1心肌细胞和小鼠心脏脂质积累依赖于VLDLR的表达[21]。

  在VLDLR/小鼠和用抗VLDLR抗体处理的小鼠发现缺血诱导的ER应激和随后的小鼠心脏凋亡减少[21]。这些结果表明,VLDLR诱导的缺血性心脏脂质积累通过激活内质网应激导致细胞死亡。在另一篇报告中,猪模型中的心肌缺血增加了细胞内胆固醇酯水平,进而激活了UPR(unfolded protein response,UPR)和ER应激,伴有心肌功能障碍。

  参考文献

  [1] Glatz J F,Nabben M,Heather L C,et al.Regulation of the subcellular trafficking of CD36,a major determinant of cardiac fatty acid utilization[J].Biochim Biophys Acta,2016,1861(10):1461-1471.

  [2] Habets D D,Coumans W A,Voshol P J,et al.AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36[J].Biochem Biophys Res Commun,2007,355(1):204-210.

  [3] Glatz J F,Luiken J J,Bonen A.Membrane fatty acid transporters as regulators of lipid metabolism:Implications for metabolic disease[J].Phys Rev,2010,90(1):367-417.

  [4] Coort S L,Bonen A.Cardiac substrate uptake and metabolism in obesity and type-2 diabetes:Role of sarcolemmal substrate transporters[J].Mol Cell Biochem,2007,299(1/2):5-18.

  [5] Aguer C,Mercier J,Man C Y,et al.Intramyocellular lipid accumulation is associated with permanent relocation ex vivo and in vitro of fatty acid translocase(FAT)/CD36 in obese patients[J].Diabetologia,2010,53(6):1151-1163.

  [6] Neves F A,Cortez E,Bernardo A F,et al.Heart energy metabolism impairment in western-diet induced obese mice[J].J NutrBiochem,2014,25(1):50-57.

  [7] Mather K J,Hutchins G D,Perry K,et al.Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-18F fluoro-4-thiapalmitate,a novel PET fatty acid tracer[J].Am J PhysiolEndocrinolMetab,2016,310(6):E452.

 
标签:

上一篇:新生儿科病房人性化护理研究

下一篇:国际教学合作在临床医学的实践研讨

合作客户


Copyright © 医学期刊网 版权所有